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ABSTRACT

Single-step genomic BLUP (ssGBLUP) is a method 
for genomic prediction that integrates matrices of pedi-
gree (A) and genomic (G) relationships into a single 
unified additive relationship matrix whose inverse is in-
corporated into a set of mixed model equations (MME) 
to compute genomic predictions. Pedigree information 
in dairy cattle is often incomplete. Missing pedigree 
potentially causes biases and inflation in genomic es-
timated breeding values (GEBV) obtained with ssG-
BLUP. Three major issues are associated with missing 
pedigree in ssGBLUP, namely biased predictions by 
selection, missing inbreeding in pedigree relationships, 
and incompatibility between G and A in level and 
scale. These issues can be solved using a proper model 
for unknown-parent groups (UPG). The theory behind 
the use of UPG is well established for pedigree BLUP, 
but not for ssGBLUP. This study reviews the develop-
ment of the UPG model in pedigree BLUP, the proper-
ties of UPG models in ssGBLUP, and the effect of UPG 
on genetic trends and genomic predictions. Similarities 
and differences between UPG and metafounder (MF) 
models, a generalized UPG model, are also reviewed. 
A UPG model (QP) derived using a transformation of 
the MME has a good convergence behavior. However, 
with insufficient data, the QP model may yield biased 
genetic trends and may underestimate UPG. The QP 
model can be altered by removing the genomic rela-
tionships linking GEBV and UPG effects from MME. 
This altered QP model exhibits less bias in genetic 
trends and less inflation in genomic predictions than 
the QP model, especially with large data sets. Recently, 
a new model, which encapsulates the UPG equations 
into the pedigree relationships for genotyped animals, 

was proposed in simulated purebred populations. The 
MF model is a comprehensive solution to the missing 
pedigree issue. This model can be a choice for multi-
breed or crossbred evaluations if the data set allows the 
estimation of a reasonable relationship matrix for MF. 
Missing pedigree influences genetic trends, but its ef-
fect on the predictability of genetic merit for genotyped 
animals should be negligible when many proven bulls 
are genotyped. The SNP effects can be back-solved us-
ing GEBV from older genotyped animals, and these 
predicted SNP effects can be used to calculate GEBV 
for young-genotyped animals with missing parents.
Key words: bias, genomic selection, pedigree, single-
step evaluation, relationship matrix

INTRODUCTION

Single-step genomic BLUP (ssGBLUP) is a ge-
nomic prediction method used to obtain genomic EBV 
(GEBV) for both genotyped and nongenotyped ani-
mals (Legarra et al., 2009; Misztal et al., 2009). The 
ssGBLUP is based on the inverse of a unified additive 
relationship matrix (H−1) that is a function of the nu-
merator relationship matrix (A) for pedigree animals 
(Henderson, 1976) and the genomic relationship matrix 
(G) for genotyped animals (VanRaden, 2008). The 
ssGBLUP is routinely used for genomic evaluations in 
various domestic animal species (Misztal et al., 2020). 
Several countries tested ssGBLUP using national-level 
dairy data sets (Koivula et al., 2018; Masuda et al., 
2018b; Oliveira et al., 2019), and a few countries imple-
mented this method officially (https:​/​/​interbull​.org/​ib/​
nationalgenoforms). Legarra et al. (2014), Mäntysaari 
et al. (2020), and Misztal et al. (2020) reviewed the 
advantages of ssGBLUP over a “multi-step” method 
involving a sequence of statistical procedures.

There is another class of single-step methods predict-
ing SNP marker effects instead of breeding values for 
genotyped animals (Gengler et al., 2012; Fernando et 
al., 2014; Liu et al., 2014). We refer to this type of 
method as single-step marker effect model (ssMEM). 

Invited review: Unknown-parent groups and metafounders  
in single-step genomic BLUP
Yutaka Masuda,1*†  Paul M. VanRaden,2  Shogo Tsuruta,1  Daniela A. L. Lourenco,1   
and Ignacy Misztal1  
1Department of Animal and Dairy Science, University of Georgia, Athens 30602
2Animal Genomics and Improvement Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705

 

J. Dairy Sci. 105:923–939
https://doi.org/10.3168/jds.2021-20293
© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. 
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Received February 12, 2021.
Accepted September 26, 2021.
*Corresponding author: yutaka@​rakuno​.ac​.jp
†Current address: Department of Sustainable Agriculture, Rakuno 

Gakuen University, Hokkaido, Japan.

https://interbull.org/ib/nationalgenoforms
https://interbull.org/ib/nationalgenoforms
https://orcid.org/0000-0002-3428-6284
https://orcid.org/0000-0002-9123-7278
https://orcid.org/0000-0002-6897-6363
https://orcid.org/0000-0003-3140-1002
https://orcid.org/0000-0002-0382-1897
mailto:yutaka@rakuno.ac.jp


924

Journal of Dairy Science Vol. 105 No. 2, 2022

As ssGBLUP is extended from genomic BLUP (GB-
LUP; VanRaden, 2008) to consider nongenotyped 
animals in the model, ssMEM is an extension of marker 
prediction models (Meuwissen et al., 2001; Habier et 
al., 2011) with SNP genotypes as covariates. In dairy 
cattle, ssMEM were investigated on computing strate-
gies (Taskinen et al., 2017; Vandenplas et al., 2018) 
and predictive ability (Konstantinov and Goddard, 
2020; Alkhoder and Liu, 2021). Mäntysaari et al. (2020) 
reviewed ssMEM in terms of modeling, development, 
and applications to dairy cattle breeding.

Single-step and multi-step genomic evaluations in 
dairy populations often face biased GEBV because of 
intensive selection, unbalanced data structure, and a 
large fraction of missing pedigree (Wiggans et al., 2017; 
Mäntysaari et al., 2020; Nani et al., 2020). The GEBV 
for young animals tend to show inflation defined as b1 
< 1 in a cross-validation, where b1 is the slope coef-
ficient of a simple regression of reliable genetic evalu-
ations (e.g., deregressed proof calculated from the full 
data) on genomic predictions (based on the truncated 
data). There are additional issues regarding pedigree 
incompleteness in US dairy populations because cows 
are categorized as either registered or nonregistered 
(Wiggans et al., 2012a). Registered animals have an 
almost complete pedigree, but nonregistered animals 
often have unidentified dams. Further, genotyped heif-
ers may not have pedigree information. Wiggans et al. 
(2018) reported that 97% of sires but 39% of dams of 
over 2 million genotyped animals in the dairy database 
were validated as of January 2018.

In quantitative genetics, any unknown parent is as-
sumed to be sampled from a base population, where the 
expectation of a breeding value is zero (Falconer and 
Mackay, 1996). However, this assumption is inappropri-
ate for animals in a selected population and for animals 
imported from other populations because it may lead 
to biased genetic evaluations. Unknown-parent groups 
(UPG), also known as phantom parents, have been ap-
plied to pedigree-based animal models in dairy cattle to 
reduce bias (Graser et al., 1987; Quaas, 1988; Westell 
et al., 1988). In a way, unknown parents are replaced 
by a group effect. This model can account for a change 
in genetic trend that is not accounted for by known 
pedigree relationships.

Unknown-parent groups have been incorporated into 
ssGBLUP through a modification of H−1 (Tsuruta et 
al., 2011; Misztal et al., 2013; Masuda et al., 2021). In 
this review, the modified H−1 with UPG will be referred 
to as “H-inverse.” Some UPG models have decreased 
the inflation of GEBV and bias in genetic trends, and 
increased the convergence stability of iterative solvers 
for the mixed model equations (MME) (Tsuruta et 

al., 2014; Matilainen et al., 2016, 2018). However, UPG 
may not completely eliminate bias and inflation. Rea-
sons for this are potential discrepancies between G and 
A due to incomplete relationships and inbreeding in A 
when pedigree is missing (Misztal et al., 2013, 2017). 
The 2 relationship matrices can be “aligned” in several 
ways (Chen et al., 2011; Vitezica et al., 2011).

Christensen (2012) and Legarra et al. (2015) devel-
oped the metafounder (MF) model, a generalization 
of the UPG model in ssGBLUP. The MF model is 
intended to ensure “compatibility” between G and A, 
and it can be applied to genomic evaluation of animals 
from related base populations such as breeds or lines. 
The MF model is relatively new; thus, research has only 
recently started in dairy cattle.

There is a need for alternative strategies to compen-
sate for missing pedigree in ssGBLUP, and there is also 
a lack of extensive discussion covering all possible issues 
arising from missing pedigree. A comprehensive solu-
tion could, in principle, be achieved in the context of 
MF. However, although the UPG theory is well defined 
for pedigree BLUP (Wolak and Reid, 2017), the most 
reasonable model for ssGBLUP is still unknown (Misz-
tal et al., 2020). For ssMEM, the study on UPG has 
just begun (Vandenplas et al., 2021).

The primary objective of this review is to clarify 
the properties of UPG and MF models in ssGBLUP. 
We first review the development of the UPG model in 
pedigree-based BLUP. Then, we describe general issues 
due to missing pedigree in ssGBLUP and compare sev-
eral models with alternative H-inverses. Metafounders 
are discussed in terms of similarities to and differences 
from UPG. We review published studies regarding the 
effect of missing pedigree on ssGBLUP genomic predic-
tions for dairy cattle. The recent development of UPG 
models in ssMEM will also be discussed.

GROUPING STRATEGY IN CLASSICAL BLUP

Before the Animal Model Era

The earliest use of grouping is attributed to Hender-
son (1949), who tried to predict a cow’s “producing abil-
ity” from records subject to culling (Pollak and Quaas, 
1983). The robustness of linear mixed models against 
selection was unknown. Animal breeders at that time 
regularly used least-squares methods that gave biased 
predictions with selected data. Groups were expected 
to account for environmental and genetic trends. Later, 
Henderson et al. (1959) formally described a linear 
mixed model with random unrelated animal effects (uij) 
nested within a fixed group (gj), where producing abil-
ity was expressed as uij + gj.
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The grouping strategy used in the sire model to eval-
uate dairy bulls assumed that all bulls were unrelated 
(Henderson, 1973; Powell and Freeman, 1974). Bulls 
were assigned to groups to account for potential genetic 
differences and genetic trends by bull stud and year. 
Some scientists expected the importance of grouping 
bulls to decrease with the use of A−1 for bulls, com-
puted with the newly developed fast algorithm (Hen-
derson, 1975; Thompson, 1979). Subsequently, Pollak 
and Quaas (1983) showed that the need for grouping 
decreased as A−1 became complete. They also dem-
onstrated that the group solutions reflected a genetic 
selection differential representing the maternal side of 
the pedigree that was not included in the bull pedigree 
file (Schaeffer, 1991). Hence, although relationships 
among bulls were considered in the sire model, group 
effects were still required to reduce bias in bull genetic 
predictions.

Unknown-Parent Groups in the Animal Model

Theoretical Development. An animal model is 
expected to account for selection and drift through A−1 
for all animals in the pedigree (Kennedy et al., 1988). 
Westell et al. (1988, p. 1310) stated that “group effects 
can be thought of as accounting for selection not ac-
counted for by records of relatives. Under this concept, 
groups would be assigned only if animals were missing 
genetic relationships.” Usually, groups are arbitrarily 
defined to reflect selection differentials of unknown 
parents based on sex, time period, region, breed, and 
country of origin (Westell et al., 1988; Wiggans et al., 
1988).

A single-trait animal model can be written as follows:

	 y = Xb + Zu + e,	 [1]

where y is a vector of observations; b is a vector of 
fixed effects; u is a vector of random additive genetic 
effects for all animals in the pedigree; e is a vector of 
random residuals; X is an incidence matrix relating 
observations to elements of b; and Z is an incidence 
matrix relating observations to elements of u. Vectors 
u and e have expected values equal to zero, var u A( ) = σu

2, 
where σu

2 is the additive genetic variance, and 
var e I( ) = σe2, where σe

2 is the residual variance. Hender-
son (1976) showed that A = TDT′, where T is a lower 
triangular matrix, and D is a diagonal matrix which is 
the covariance matrix of Mendelian-sampling contribu-
tions.

Thompson (1979) recognized that the breeding value 
of an animal was expressed as an accumulation of 
Mendelian-sampling terms from its ancestors and itself 

through T. He then suggested that the group effects 
could also be accumulated in the same manner under a 
sire model. Robinson (1986) and Westell and Van Vleck 
(1987) illustrated how this concept could be extended 
to the animal model.

The current UPG model used in genetic evaluation 
was developed by Graser et al. (1987) and Westell et 
al. (1988) and explained in detail by Quaas (1988). A 
vector of breeding values with a contribution of group 
effects is

	 u* = u + Qg,	 [2]

where Q is a matrix of expected fractions of genes in 
the ith individual coming from the jth group, and g is a 
vector of fixed means (i.e., UPG effects). Note that the 
sum of the group compositions (the sum of elements in 
a row of Q) is 1.

Transformed Equations with UPG. Replacing 
vector u with vector u* in mixed model [1] yields

	
y Xb Zu ZQg e

Xb Zu e

= + + +

= + +* .
	 [3]

The solutions for u and g are obtained by solving the 
MME based on the first model in [3]. To obtain the 
solution for u* directly, the MME can be reformulated 
using the Quaas-Pollak (QP) transformation (Quaas 
and Pollak, 1981) as
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	 [4]

where λ σ σ= e u
2 2 . Using the joint density function, 

Quaas (1988) derived the “inverse of a covariance ma-
trix” for ′ = ′





′θ u g* ;  that is,

	 A
A A Q

Q A Q A Q
* .=

−

− ′ ′

















− −

− −

1 1

1 1
	 [5]

This matrix is not full rank, and therefore, it is not 
the inverse of any particular relationship matrix. Nev-
ertheless, Henderson’s rules can still be used to build 
matrix [5] without computing Q by treating the UPG 
as “phantom animals” that do not contribute to the 
Mendelian-sampling variance (Quaas, 1988; Westell et 
al., 1988).

The joint relationship matrix for u* and g [i.e., 
var(θ)], is defined by random group effects, assuming 
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g ∼ ( )MVN u0 2, ,Σσ  where Σ is the covariance matrix 
among UPG. Using block-matrix partitioning rules 
(Searle, 1982) and omitting σu

2, var(θ) and its inverse 
are as follows:

	

A
u Qg
g

A Q Q Q
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.

	 [6]

The covariance matrix [6] shows that the incomplete A 
is extended with Q QΣ ′ (i.e., the UPG variation), al-
though the inverse does not clearly show this fact. The 
inverse [6] becomes A* for fixed UPG effects because 
Σ− →1 0. Note that a form of the matrix [6] was used in 
a context of random UPG (van der Werf and Thomp-
son, 1992; VanRaden, 1992; Schaeffer, 1994), but it was 
not formally derived until recently (Masuda et al., 
2021).

Fixed Versus Random UPG. The UPG have 
been modeled as fixed effects because a group effect is 
thought to represent the average genetic level of a base 
population (Graser et al., 1987; Quaas, 1988). Under 
this assumption, A* is not full rank, and a group effect 
cannot be uniquely estimated because of dependencies 
on, and possibly confounding with, other group fixed 
effects. The predicted genetic value of an animal should 
be expressed as a difference from the predicted value of 
other animals.

Several concerns have been raised about fixed UPG. 
Kennedy (1991) pointed out shortcomings of assuming 
UPG as fixed from a theoretical point of view, namely 
unaccountability of relationships among base individu-
als and inbreeding in the base populations, no change 
in additive genetic variances in base populations, and 
no consideration of genetic drift for small UPG. These 
concerns were discussed in subsequent studies with ran-
dom UPG, including VanRaden’s model (VanRaden, 
1992) and selected-base-population models as well as 
the metafounder model presented in the sections below. 
Another issue is numerical instability of UPG esti-
mates. Foulley et al. (1992) suggested random UPG as 
an option when fixed UPG were not estimated well. A 
model with random UPG appeared useful to avoid con-
founding between UPG and fixed effects in the model 
because it removed estimability problems, and helped 
with convergence in iterative solvers (Schaeffer, 1994; 
Sullivan and Schaeffer, 1994; Lidauer et al., 2015). 
Schaeffer (1994) suggested using Σ = I in [6] because 
of simplicity. A random UPG model is considered as a 
better option than the fixed UPG in terms of theory 
and computational stability.

VanRaden’s Random UPG  
with Approximated Inbreeding

Approximated Inbreeding Coefficients. Inbreed-
ing coefficients are used to monitor genetic diversity in 
livestock and wild populations, assess inbreeding de-
pression, and construct A−1 in genetic evaluation. The 
inbreeding coefficients can be calculated with the tabu-
lar method (Emik and Terrill, 1949) or more efficient 
algorithms (e.g., Meuwissen and Luo, 1992). However, 
if the pedigree is incomplete, unknown parents are as-
sumed to be noninbred and unrelated, and inbreeding is 
underestimated in populations with assortative mating.

VanRaden (1992) developed an iterative method 
to approximate inbreeding coefficients using pedigree 
with UPG, assuming that base individuals in a group 
may be inbred and individuals among groups may be 
related. Initially, the inbreeding for UPG j (Fj) and 
the relationship among UPG j and k (ajk) are set to 
zero. As a first step, the inbreeding coefficients for ani-
mals in the pedigree are calculated using the tabular 
method as if UPG were real animals. In the next step, 
Fj and ajk are estimated with the mean inbreeding for 
and the mean relationship among known parents that 
have the same genetic background as the corresponding 
UPG. The 2 steps are repeated until the inbreeding 
coefficients for all animals converge. The approximated 
inbreeding coefficients using this approach are expected 
to be equal to or greater than standard inbreeding coef-
ficients because of inbred ancestors. VanRaden (1992) 
suggested constructing Σ [6] as Σjj = 1 + Fj and Σjk = 
ajk at convergence.

Inbred and Selected Base Populations. The in-
breeding coefficients should be considered in A−1 to 
properly account for selection on the variance of breed-
ing values in the animal model although the inbreeding 
coefficients are optional to construct A−1 (Henderson, 
1976). If the pedigree is incomplete, the approximated 
inbreeding can be an alternative to use. VanRaden 
(1992) suggested a random UPG model for AΣ

*  [6] with 
approximated inbreeding coefficients for pedigree ani-
mals and approximated Σ for UPG. Henderson’s rules 
to construct A−1 are the same except for the elements 
of the inverse of the matrix of Mendelian-sampling vari-
ances (D−1). The ith diagonal element of D−1  is

	 d
r F r Fii
s s d d

=
+( ) −( )+ +( ) −( )

4

1 1 1 1δ δˆ ˆ
,	 [7]

where F̂s F̂d( ) is the approximated inbreeding coefficient 
of sire s (dam d), δs (δd) is 0 if sire (dam) is known and 
1 otherwise, and r represents the reduction in additive 
genetic variance, and it is set to 1 when base popula-
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tions are not selected. van der Werf and Thompson 
(1992) and Alfonso and Estany (1999) discussed how r 
was estimated. When s (d) is unknown, the inbreeding 
of the corresponding UPG F̂j( ) is used.

The random UPG model with formula [7] deals with 
selected base populations. Henderson (1985) assumed 
that the base populations had been selected, and he 
tried to alter A to account for the selected base popula-
tions with nonzero means of breeding values. Later, 
Henderson (1988) simplified his 1985 model and found 
it to be identical to the standard UPG model (Graser 
et al., 1987). If base populations are generated as a 
consequence of selection or drift, ideally, all base ani-
mals should be traced back to an unselected hypotheti-
cal population, as Schaeffer (1991) explained. van der 
Werf and Thompson (1992) developed the random 
UPG model [7] independently of VanRaden (1992), and 
they argued that r could satisfy σ σu ur

2
0

2= , where σu
2 is 

the additive genetic variance after selection, and σu0
2  is 

the additive genetic variance before selection. These 
authors suggested using Σ = rI and r F= −1 , where F   
is the average inbreeding coefficient in the selected base 
population. Alfonso and Estany (1999) were not aware 
of VanRaden (1992), and they provided a formal deri-
vation to construct A−1 based on selected base popula-
tions with fixed UPG. Their effort resulted in Van-
Raden’s formula [7].

MISSING PEDIGREE ISSUES  
IN SINGLE-STEP GBLUP

Complete Pedigree with No Selection

Misztal et al. (2009) suggested including genotyped 
and nongenotyped animals in the standard animal 
model [1]. The unified additive relationship matrix 
when only a portion of animals in the pedigree have 
genotypes, omitting the additive genetic variance, is as 
follows:

	

H
u u u
u u u

A A A

=
( ) ( )
( ) ( )





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


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+ −
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22
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−( )
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



− −

−
,

	

where subscript 1 is for nongenotyped animals and sub-
script 2 is for genotyped animals (Legarra et al., 2009). 
The inverse of the unified additive relationship matrix 
H, derived by Aguilar et al. (2010) and Christensen 
and Lund (2010), is as follows:

	 H A
G A

− −
− −= +
−















1 1
1

22
1

0 0

0
.	

According to VanRaden et al. (2009) and Aguilar et 
al. (2010), G is expected to partially account for the 
same additive genetic relationships as A, and therefore, 
A22 should discount for double-counting. In practice, 
to ensure positive definiteness, G is often “blended” 
with A22 (or I) as wG + (1 − w)A22, where w is an 
arbitrary weight (VanRaden, 2008). The weight 1 − w 
can be defined as the fraction of the residual polygenic 
variance (Liu et al., 2016; Mäntysaari et al., 2017) not 
accounted for by G. In this review, G is assumed to 
be positive definite, thus there is no residual polygenic 
variance.

Matrix H shows that G and A22 need to be “compat-
ible” to satisfy E(G) = A22 when marker genotypes 
are considered as random variables (VanRaden, 2008; 
Christensen et al., 2012). Compatibility means that G 
and A22 have the same average of diagonals and the 
same average of off-diagonals. If this is not guaranteed, 
the GEBV are thought to be biased (Chen et al., 2011; 
Vitezica et al., 2011).

The average elements of A22 (i.e., average inbreeding 
and average additive genetic relationship) are deter-
mined by the number of generations in the pedigree, 
pedigree completeness, effective population size, selec-
tion, drift, and mating system (Falconer and Mackay, 
1996). Meanwhile, the average elements of G are com-
puted using allele frequencies (AF) of genomic markers 
(VanRaden, 2008). For example, using AF calculated 
from genomic data, the average of the off-diagonal ele-
ments in G is expected to be 0, and the average of the 
diagonal elements of G is expected to be 1 (Chen et 
al., 2011). In an ideal population (i.e., large, in random 
mating, and without selection and drift), or when the 
pedigree is shallow, individuals are most likely to be 
unrelated and noninbred in A22, and AF are expected 
to be constant over generations. Thus, G can be com-
patible with A22.

Complete Pedigree Under Selection

In a typical breeding program, the population is 
subject to selection, and genotyped animals are often 
from recent generations, although the pedigree can 
contain animals from a large number of generations. 
Average elements in A22 are greater than in G when 
computed with current AF. Average elements of the 
additive relationship matrix are associated with ex-
pected breeding values in selected populations (Chen 
et al., 2011; Vitezica et al., 2011). The “genomic base” 
(population with mean GEBV equal to 0 for genotyped 
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animals) is defined by the population providing the 
AF. In contrast, the first generation of the pedigree 
defines a “genetic base” with mean EBV equal to 0. 
The mean GEBV based on current AF can be equal to 
0 for the current genotyped population, even when the 
mean EBV is nonzero. In other words, G constructed 
with current AF cannot account for past selection that 
occurred before the genomic information was collected.

To make the A22 and G matrices compatible, or 
equivalently to make the genomic and genetic bases 
be at the same level, G should be calculated using the 
same AF as in the base population defined by pedigree 
(VanRaden, 2008; Meuwissen et al., 2011; Meyer et 
al., 2018). The base AF are unknown, and an accurate 
estimation of the frequencies is often difficult (Misztal 
et al., 2020). A simple solution is to align G to A22 in 
terms of the averages of their diagonal and off-diagonal 
elements. This “alignment” has the same effect as add-
ing a constant to the GEBV to shift the genomic base 
[see Legarra et al. (2014) for a detailed discussion].

Strandén and Christensen (2011) showed that the 
general mean added to the GEBV accounted for the 
difference in AF as follows:

	 u u 12 2: ,aligned = + µ 	 [8]

where 1 is a vector of ones, and µ is the general mean 
that absorbs the difference between genomic and ge-
netic bases. This adjustment is justified when G is 
constructed as WW′/s and W = M − 1p′, where M 
is a matrix of genomic markers, p is a vector of known 
functions of AF, and s is a constant. The genomic 
relationships of VanRaden’s first method (VanRaden, 
2008) satisfy this condition. This explicit-mean model 
was studied in SNP BLUP by Hsu et al. (2017) and in 
ssGBLUP by Bermann et al. (2021).

The aligned GEBV are obtainable without comput-
ing µ using the aligned G as the variance of [8]:

	 G G 11aligned = + ′β α ,	 [9]

where α accounts for selection and drift in GEBV and 
β adjusts for the inflation of GEBV due to selection 
(Vitezica et al., 2011; Christensen et al., 2012; Misztal 
et al., 2017). The constants α and β are calculated based 
on average elements of G and A22 (Chen et al., 2011; 
Christensen et al., 2012; Gao et al., 2012). Formula [9] 
clearly assumes that G is lacking variation due to µ. 
It should be noted that the individual element of G 
does not necessarily match the corresponding element 
in A22 because the alignment modifies the average and 
scale of elements in G as a whole so that the genomic 
base is adjusted to the genetic base. Meyer et al. (2018) 

reviewed various alignment methods to estimate unbi-
ased genetic trends under selection.

Vitezica et al. (2011) showed that the alignment for-
mula [8] was equivalent to a UPG model. When µ is 
explicitly included in the model, H−1 is augmented by 
an unaligned G−1 as follows:

H A G A G

G G
aligned
− − − − − − −

− − − −

= + −

′ ′ +

1 1 1 1
22

1 1 1

1 1 1 1

0 0 0

0 1

0 1 1 1

β β

β β α−−



















1

� [10]

for a vector of interest ′ = ′ ′



θ u u1 2: : ,aligned aligned    µ  where 

A−1 is padded with 0 for equations due to µ, and ′u1:aligned 
is the vector of breeding values aligned with a known 
function of µ for nongenotyped animals. The aligned 
breeding values in θ are expected to be unbiased be-
cause selection and drift are properly accounted for.

Incomplete Pedigree Under Selection

Several studies have described compatibility issues 
in real populations under selection when some animals 
have missing parents regardless of their genotyping sta-
tus (Misztal et al., 2013; Tsuruta et al., 2014, 2019). In 
dairy cattle populations, UPG have often been applied 
only to pedigree relationships because software pack-
ages for ssGBLUP supported pedigree UPG only (Tsu-
ruta et al., 2011; Koivula et al., 2015). An H-inverse 
with pedigree UPG is as follows:

	 H A G Aω ω* * ,= + −





















− −

0 0 0

0 0
0 0 0

1
22

1 	 [11]

where ω is an arbitrary constant. This constant is re-
quired to reduce the inflation of GEBV. Also, it could 
avoid divergence in MME iterative solvers (Misztal et 
al., 2013). Martini et al. (2018) presented a detailed 
discussion on the use of ω to decrease GEBV inflation. 
A genomic model with this H-inverse will be referred to 
as the “Omega model” (Omega-M).

The Omega-M was “derived” ad hoc; thus, it may 
not be theoretically justified. Although the Omega-
M has been widely used to obtain GEBV with UPG, 
inflation and bias of GEBV as well as computational 
problems remained even though UPG, alignment, and 
ω were considered (Tsuruta et al., 2014). Further, when 
ω is too small (<0.8), the validation accuracy of GEBV 
may be reduced (Mäntysaari et al., 2020).

Misztal et al. (2013, 2017) suggested that missing 
pedigree could cause at least 3 inseparable issues asso-
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ciated with bias and inflation of GEBV in ssGBLUP: 
(1) biased predictions by selection due to a lack of in-
formation, (2) underestimation of inbreeding and addi-
tive relationships, and (3) poor compatibility between 
G and A22. Issues 1 and 2 are associated with incorrect 
UPG, and issues 2 and 3 are related to an incomplete 
A22 against a complete G. Underestimation of inbreed-
ing for genotyped animals may create a discrepancy 
between pedigree and genomic inbreeding and relation-
ships. This issue is attributed to unequal pedigree 
lengths for genotyped animals when G is aligned to 
average elements of A22 with missing pedigree. For an 
animal with a deeper pedigree, the aligned genomic 
relationships are expected to be smaller than the pedi-
gree relationships. These facts are problematic in the 
inverse scale, and the diagonals of G A− −−( )1

22
1  can be 

negative, possibly leading to ill-conditioned MME. In 
addition, with imperfect alignment, GEBV tend to be 
biased up with shorter (shallower) pedigree, and biased 
down with longer (deeper) pedigree (Chen et al., 2011). 
The arbitrary constant ω can compensate for a portion 
of the misalignment. When UPG are applied only to 
A−1, neglecting the other relationship matrices, the 
UPG estimates are expected to be biased (Misztal et 
al., 2013).

UPG MODELS IN SINGLE-STEP GBLUP

Misztal et al. (2013) projected the UPG model [3] 
into the single-step GBLUP model by partitioning Q 
into ′ = ′ ′ Q Q Q1 2  to be conformable with H−1, and de-
fining θ as follows:

	 θ =


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* .	

As Matilainen et al. (2018) showed, AΣ
*  [6] can be di-

vided into 3 × 3 blocks according to θ; thus,
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	 [12]

where subscript 3 refers to UPG. The functions of Q in 
the third row and column will be referred to as the 
UPG equations. Matrix AΣ

*  is sparse, and the sparsity is 
useful to compute A22

1−  indirectly (Henderson, 1976) as 
follows:

	 A A A A A22
1 22 21 11 1 12− −= − ( ) .	 [13]

Notably, A11 contains information for nongenotyped 
ancestors of genotyped animals only.

Properties of UPG Models

QP Model. Misztal et al. (2013) replaced A−1 with 
H−1 in the QP-transformed equation [4] and presented 
the following HQΣ

*  matrix associated with θ:

H A G A G A Q

Q G A Q G

QΣ Σ
* *= + − − −( )

− −( ) ′′

− − − −

− − −

0 0 0

0
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
−A Q22

1
2

.

� [14]

Formula [14] assumes random UPG although the origi-
nal QP transformation assumed fixed UPG Σ− =( )1 0 . 
Regardless of whether UPG are fixed or random, the 
model corresponding to the HQΣ

*  matrix [14] will be re-
ferred to as the “QP model” (QP-M).

Matrix HQΣ
*  can be split into several matrices as fol-

lows:
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G Q
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The matrix EG is similar to 1′G−11 and G−11 in the 
aligned model [10] and relates UPG effects (g) to the 
base adjustment (µ). In addition, EG contains a direct 
association between u2

* and g, which makes the 2 effects 
inseparable. In a simulation study, Masuda et al. (2021) 
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suggested that, if alignment is applied, u2
*, g, and µ can 

be confounded, and GEBV become sensitive to UPG 
solutions. The matrix EA22 is expected to offset AΣ

* . 
However, EA22 has a structure similar to EG; thus, u2

* 
and g may be inseparable in the MME, and the solu-
tion for g may also be biased (Masuda et al., 2021).

Altered QP Model. Masuda et al. (2019a), Brad-
ford et al. (2019), and Tsuruta et al. (2019) thought 
that UPG should merely compensate for missing pedi-
gree-relationships, not for genomic relationships. These 
authors arbitrarily removed G−1 from the UPG equa-
tions in HQΣ

*  as follows:

	 H A G A A Q

Q A Q A Q

AΣ
* *= + − − −( )

− ′ −( ) ′ −( )

− − −

− −
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

.	 [15]

The model associated with HAΣ
*  matrix [15] that disre-

gards fixed and random UPG will be referred to as the 
“altered-QP model” (AltQP-M). Matrix HAΣ

*  [15] does 
not have EG, and there is no immediate confounding 
among u2

*, g, and µ. However, EA22 is a potential source 
of bias for genetic trends because it creates the direct 
link between u2

* and g, and these 2 effects may not be 
inseparable as in QP-M.

Encapsulated-UPG Model. Without UPG, when 
all animals are genotyped, A22 is equal to A, and H−1 
reduces to G−1 (i.e., the standard GBLUP). If the same 
principle applies to the UPG model, when all animals 
are genotyped, the H-inverse should become G−1. How-
ever, this does not occur with either QP-M or AltQP-
M. Thus, Masuda et al. (2021) suggested including the 
UPG equations in A22

1−  as follows:

	 H A G AEΣ Σ
* * * ,= + −
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where
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Using [16] with all animals genotyped in MME [4], ĝ is 
canceled out, and only G−1 remains in MME for û (i.e., 
reducing to GBLUP). Matrix A22

*  [17] can be derived by 
absorbing all elements other than A22 into A22 in [12]. 
Note that [17] has a similar structure to [13]. The 

model with the HEΣ
*  matrix will be referred to as the 

“encapsulated-UPG model” (EUPG-M), which is valid 

for random UPG because 
A A

A A
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only when Σ−1 0≠ . It should be noted that A22
*  [17], like 

A22
1−  [13], can be constructed using only the ancestors of 

genotyped animals, but 
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
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
 should be recalcu-

lated with the subset pedigree.
Masuda et al. (2021), using simulation, showed that 

EUPG-M could separate the UPG effects from GEBV 
and that the predicted genetic trends were sufficiently 
accurate compared with the true genetic trend. The 
UPG effects in EUPG-M do not have a direct link with 
GEBV through G−1 and A22

1− , and the prediction of g is 
more independent from UPG than in QP-M and Al-
tQP-M.

Theoretical Justification

Masuda et al. (2021) presented derivations of QP-M, 
AltQP-M, and EUPG-M. Each model was derived from 
a density function after adding genomic information to 
the original density, p uu g A, | , , .Σ σ2( )  Differences among 
these 3 UPG models stem from the specific genomic 
relationship matrix for c u g= ′





′
2
*  added to the original 

density.
Specifically, EUPG-M is constructed under the as-

sumption that var u G2
2* ,( ) = σu  as in the standard ssGB-

LUP (Aguilar et al., 2010). The AltQP-M is derived 
assuming that the genomic information gives both 
var u G2

2*( ) = σu and var g( ) = Σσu2, but cov u g2 0*, .′( ) =  
This assumption is questionable because Σ was already 
specified in the initial density given the pedigree. The 
QP-M assumes that

	 var u Q g
g

G Q Q Q
Q
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2

2
*

,+










=

+ ′
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


Σ Σ
Σ Σ

σu 	 [18]

which indicates that G, considering its similarity to A 
in [6], contains incomplete relationships due to missing 
pedigree. This assumption may be inappropriate be-
cause G is usually expected to describe the additive ge-
netic relationships among genotyped animals regardless 
of pedigree completeness (Christensen, 2012; Misztal et 
al., 2013; Legarra et al., 2015).

The inverse of [18] is the same as [6] replacing A−1 
with G−1, and Q with Q2. Plieschke et al. (2015) sug-
gested to use this inverse in a GBLUP model to treat 
UPG as breeds of origin. They split G into 2 com-
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ponents: variation within breeds (GS) and segregation 
among breeds (GA), equivalent to the approach by 
García-Cortés and Toro (2006). In this approach, GS 
does not contain variation due to UPG (i.e., breeds), 
and the between-breed variation is restricted to GA. 
Makgahlela et al. (2013) suggested similar methods 
to estimate these 2 genomic relationship matrices. A 
potential model that included nongenotyped animals 
would need to replace G with GS and Σ with GA in 
[14].

Comparison Among UPG Models

Simulated Populations. Masuda et al. (2021) com-
pared genetic trends for proven bulls and genotyped 
animals among QP-M, AltQP-M, and EUPG-M in a 
simulated purebred population where 50% of genotyped 
females had unidentified dams. The QP-M and AltQP-
M yielded potentially biased genetic trends for proven 
bulls, and they also underestimated UPG predictions 
because of confounding with GEBV. The EUPG-M 
accurately predicted UPG and the genetic trend bias 
for proven bulls was minimal. The genetic trend for 
females was accurate with all UPG models. Predict-
ability, inflation, and bias of young genomic predictions 
were comparable among the 3 UPG models.

Tsuruta et al. (2019) compared GEBV between QP-M 
and AltQP-M using similar simulated data. These au-
thors found that both models slightly overestimated 
genetic trends for nongenotyped proven bulls, and un-
derestimated genetic trends for genotyped proven bulls, 
but the bias was limited. However, QP-M yielded lower 
GEBV predictability and inflation for young-genotyped 
animals than AltQP-M. They did not report UPG pre-
diction biases. Tsuruta et al. (2019) used 3 times more 
phenotypes and genotypes than Masuda et al. (2021). 
The biases in predictions can be removed with larger 
data sets.

Bradford et al. (2019) compared QP-M and Omega-
M using simulated dairy cattle populations with more 
missing pedigree for animals with smaller breeding 
values. The QP-M yielded lower GEBV accuracies and 
greater bias for young-genotyped animals. They did 
not observe any improvement of AltQP-M over QP-M. 
However, they mentioned that the amount of informa-
tion used to estimate fixed UPG effects may not have 
been enough.

Dairy Cattle Populations. The QP-M has been 
considered in several studies as a replacement for Ome-
ga-M to have better convergence (Matilainen et al., 
2016; Bradford et al., 2019; Mäntysaari et al., 2020). 
Tsuruta et al. (2019) reported that the MME for QP-M 
converged in US Holstein, but the MME for Omega-M 

did not. Similarly, Matilainen et al. (2018) found that 
the MME for Omega-M diverged in Nordic Red dairy 
cattle, and indicated that QP-M had better convergence 
and produced more reasonable genetic trends.

The QP-M is likely sensitive to the amount of ge-
nomic data or condition of G. Tsuruta et al. (2019), 
using US Holstein data until 2010, found that QP-M 
underestimated genetic trends during the last few 
years, and that AltQP-M also underestimated genetic 
trends but to a lesser degree. These 2 models gave the 
same genetic trends with US Holstein data until 2014 
(Tsuruta et al., 2019). Masuda et al. (2018a) reported 
lower predictability with QP-M than with Omega-M, 
probably because of inaccurate UPG solutions for 
production traits obtained with US Holstein data until 
2011. Later, Masuda et al. (2018b) obtained genetic 
trends with QP-M using a US Holstein data set with 
more than 700 thousand genotypes. until 2015. Koivula 
et al. (2018) used QP-M to calculate GEBV of protein 
yield for all genotyped and nongenotyped animals in 
Nordic Red dairy cattle. The genetic trend for old ani-
mals estimated with 30,186 genotypes was almost iden-
tical to both trends with 21,416 genotypes and without 
genotypes (i.e., pedigree BLUP). The amount of data 
required to estimate stable genetic trends in QP-M de-
pends on unbalancedness of pedigrees and diverse UPG 
(Mäntysaari et al., 2020).

Few researchers have examined AltQP-M. Tsuruta et 
al. (2019) and Masuda et al. (2019a) observed a reduc-
tion in inflation of GEBV with AltQP-M relative to 
QP-M for type and production traits in US Holstein. 
Using more recent data for production traits in the same 
population, AltQP-M showed greater predictive ability 
and generally less inflation in GEBV for young bulls 
and heifers than QP-M (Cesarani et al., 2021). These 
authors also found the predictive ability of AltQP-M to 
be more stable than that of QP-M at various pedigree 
depths. Finally, the AltQP-M required fewer iterations 
than QP-M to solve the MME.

Inbreeding in ssGBLUP

It is crucial to use inbreeding coefficients in the con-
struction of A−1, regardless of whether they are the 
standard ones or VanRaden’s approximated inbreeding, 
to improve compatibility between the pedigree and ge-
nomic relationship matrices. For pedigree BLUP, in-
breeding coefficients are often ignored when forming 
A−1 because of a computational simplicity and no 
trouble in convergence of iterative solvers. The EBV 
biases do not seem to be a concern (Mehrabani-Yeganeh 
et al., 2000). However, for ssGBLUP, neglecting in-
breeding when constructing A−1 causes severe biases in 
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GEBV with UPG as well as computational problems 
(Matilainen et al., 2016; Tsuruta et al., 2019). If A22

1−  is 
computed indirectly with [13], either standard or esti-
mated inbreeding coefficients should be considered for 
A−1. Several studies reported that utilization of stan-
dard inbreeding coefficients in A−1 decreased the infla-
tion of GEBV and the convergence behavior of iterative 
solvers (Matilainen et al., 2016; Garcia-Baccino et al., 
2017; Masuda et al., 2018b).

Estimated inbreeding coefficients can improve com-
patibility between pedigree and genomic relationship 
matrices. Misztal et al. (2017) showed that estimated 
inbreeding coefficients removed convergence issues and 
reduced GEBV inflation compared with standard in-
breeding coefficients. Tsuruta et al. (2019) reported a 
similar outcome when using estimated inbreeding coef-
ficients in QP-M and AltQP-M for 18 type traits in US 
Holstein.

Missing Pedigree and Predictive Ability

The effect of missing pedigree on realized (or valida-
tion) accuracy of GEBV could be limited (Bradford et 
al., 2019; Tsuruta et al., 2019; Masuda et al., 2021). 
Provided sufficient availability of genotypes, the GEBV 
of young-genotyped animals can be expressed as direct 
genomic predictions (DGP) that are functions of G−1 
and u2 without UPG (or u2

* with UPG; Lourenco et al., 
2015). The DGP are similar to genomic BLUP (GB-
LUP). Their accuracy depends on the number of geno-
typed animals with reliable GEBV (VanRaden et al., 
2009) and the number of independent chromosome 
segments, which is a function of the effective popula-
tion size and the length of the genome (Goddard, 2009). 
If there are many daughter-proven genotyped bulls like 
in the US dairy population, DGP should be accurate 
regardless of missing pedigree and choice of UPG 
model. The GEBV of young-genotyped animals can be 
indirectly calculated through SNP effects back-solved 
from u2

*, G−1, and the genomic marker matrix (W) 
(Lourenco et al., 2015; Garcia et al., 2020).

An incomplete pedigree will reduce the accuracy of 
DGP when the number of proven bulls is limited (To-
nussi et al., 2017). This reduction in accuracy is also 
evident in genotyped populations of small size where 
GEBV are determined by pedigree relationships in ad-
dition to genomic relationships (Lourenco et al., 2015).

METAFOUNDERS

Metafounders are groups that serve as proxies for 
animals in base populations. Like UPG, it is the re-
sponsibility of the user to assign MF to unknown par-

ents. The goal of the MF model is to modify A so 
that, in theory, it becomes compatible with G05 (G 
with AF equal to 0.5), which does not need alignment. 
The modified relationship matrix accounting for MF 
(Γ) proposed by Legarra et al. (2015) was the same as 
in VanRaden’s UPG model (VanRaden, 1992). Pedi-
gree inbreeding and relationships are entirely accounted 
for by Γ. The genetic and genomic bases are set to a 
hypothetical population with AF equal to 0.5. Hence, 
the MF model was presented as a possible solution for 
missing pedigree issues in ssGBLUP. The similarities 
and differences between UPG and MF are described in 
this section.

MF Model

The numerator relationship matrix with MF is desig-
nated as AΓ and its inverse as AΓ

−1 in this review. Vector 
g in the MF model contains random MF effects instead 
of random UPG effects. Vector g follows a normal dis-
tribution, g ∼ ( )N u0 2, ,Γσ  where Γ is a covariance matrix 
among MF. The vector of additive genetic effects (uΓ) 
contains genotyped animals, nongenotyped animals, 
and MF, i.e., ′ = ′ ′ ′ u u u gΓ Γ Γ1 2 , and its distribution is 
u AΓ Γ∼ ( )N u0 2, ,σ  where
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
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,

	

with subscript m for MF. The H-inverse with MF is as 
follows:

	 H A G AΓ Γ Γ
− − − −= + −





















1 1
05

1
22
1

0 0 0

0 0
0 0 0

.	 [19]

Legarra et al. (2015) showed that AΓ could be com-
puted with either the tabular method or with Colleau’s 
method (Colleau, 2002) by tracing animals back to the 
MF, and the estimated inbreeding could be calculated 
using a modification of the method of Meuwissen and 
Luo (1992). Matrix AΓ

−1 can be constructed with Van-
Raden’s approach in a manner similar to AΣ

*  by replac-
ing Σ with Γ, and treating MF as real animals.
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Simplified H-Inverse

The 3 assumptions of the MF model, namely: (1) 
AΓ22 is compatible with G05 that includes the variation 
due to MF, (2) Γ is defined before obtaining G05, and 
(3) genomic information only updates the distribution 
of uΓ2, are equivalent to those for EUPG-M [17]. Thus, 
the derivation of HΓ

−1 is the same as that for EUPG-M 
(Masuda et al., 2021), and an alternative H-inverse 
with MF is as follows:

	 H A G AΓ Γ Γ
* * ,= + −





















− −1
05

1
22

0 0 0

0 0
0 0 0

	 [20]

where AΓ22
*  is identical to A22

*  [17] except for the replace-
ment of AΣ

*  with AΓ
−1. Similar to EUPG-M, AΓ

11 can be 
for ancestors of genotyped animals only as in [17] con-
structed with the subset pedigree. Masuda et al. (2019b) 
used formula [20] to apply a MF model to a US Holstein 
data set with 2.3 million genotyped animals.

Masuda et al. (2021) found that EUPG-M gave nu-
merically identical GEBV to those from the MF model 
in a simulated purebred population where all animals 
were related in the pedigree. The 2 models are equiva-
lent in practice, although there are theoretical differ-
ences between them.

Modeling of Group Effects

There is a critical difference between UPG and MF 
when defining group effects. In the UPG model, the 
vector of group effects (g) can be defined as the vector 
of means of additive genetic animal effects in a base 
population. However, in the MF model, vector g is 
simply a vector of group effects (i.e., MF effects are not 
additive genetic effects of base animals).

For simplicity, as in Christensen (2012), consider a 
single MF and let ub be the additive genetic effect of a 
base animal. Then, group effect g reduces to g and Γ to 
γ; hence, var g u( ) = γσ2. The self-relationship of the base 
animal is var ub u( ) = +( )1 2 2γ σ/  in the base population 
(Legarra et al., 2015), and the inbreeding coefficient of 
the base animal is γ/2, computed as the correlation 
between gametes, which can be negative (Wright, 1922). 
The inbreeding coefficient of the MF is 
F ubΓ = − = ( )−γ 1 2 3var . Conversely, in the UPG 
model, Σ reduces to a = var(ub), and the inbreeding 
coefficient of the base animal is Fa = a − 1 = var(ub) 
− 1. The association between the inbreeding coefficients 
of the 2 models, obtained by equating the 2 expressions 
using var(ub), is as follows:

	 FΓ = 2Fa − 1.	

When 2 MF (1 and 2) are considered, the relationship 
between MF is γ12, which is equal to the corresponding 
additive relationship between UPG, Σ12.

The association between FΓ and Fa explains how the 
UPG and MF models are similar. Element dii can be 
obtained using Henderson’s rules with MF as follows:

	 d
F Fii
s d

=
− −

4
2 Γ Γ

,	

where FΓs (FΓd) is the inbreeding coefficient of the 
sire (dam). This formula assumes that all parents are 
known regardless of whether they are real animals or 
MF. When an MF’s FΓs (FΓd) is replaced with a base 
animal’s 2Fa − 1, the above expression for dii becomes 
identical to VanRaden’s formula [7] dealing with the 
case of missing parents.

A negative FΓ represents an excess of heterozygotes 
(Legarra et al., 2015). An extreme example is γ = 0 and 
FΓ = −1 (equivalently, a = 1 and Fa = 0); in this case, 
the algorithms for AΓ and AΓ

−1 are reduced to the stan-
dard methods for A and A−1. In the Meuwissen and 
Luo algorithm (Meuwissen and Luo, 1992), unrelated 
base individuals (coded as 0 in their program) have a 
−1 value for inbreeding, and they are treated as known 
parents.

Scale of the Additive Genetic Variance

Assuming a single MF, matrix AΓ is identical to the 
following alignment formula:

	 A A 11Γ = −( ) + ′1 2γ γ/ .	 [21]

However, with multiple MF, the explicit alignment is 
an approximation (Legarra et al., 2015). In addition 
to MF, VanRaden et al. (2011) developed a formula 
similar to (21) to align A with G05, or G with base AF, 
for multiple purebred populations.

Whereas the additive genetic variance is estimated 
using the standard A, the actual pedigree relationships 
used in the mixed model are scaled as in AΓ with [21], 
resulting in an incorrect scale for the additive genetic 
variance. Therefore, Legarra et al. (2015) suggested 
a simple adjustment for the additive genetic variance 
used for multiple MF:

	 σ
σ

u
u

k
k2

2

1
2

* ,≈ = +
( )
− with 

diag Γ
Γ 	 [22]
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where σu
2 is the additive genetic variance assuming un-

related base animals for A, σu
2* is the additive genetic 

variance among related base animals for AΓ, diag Γ( ) is 
the average of the diagonals in Γ, and Γ is the average 
of all elements in Γ. For a single MF, k = 1 − γ/2.

Estimation of Gamma Parameters

Estimation methods for Γ have been investigated 
because this parameter needs to be estimated before 
genomic prediction with MF. A maximum-likelihood 
method (Christensen, 2012) and summary statistics for 
G and A22 (Legarra et al., 2015) resulted in computa-
tional issues and inaccurate estimates. Garcia-Baccino 
et al. (2017) developed approaches to calculate Γ based 
on the estimated AF (or equivalently, the mean gene 
content) of each marker in the base populations using 
A22, Q2, and marker genotypes (McPeek et al., 2004; 
Gengler et al., 2007). The matrix Γ is estimated as 
2VV′ = 8var(P), where V = {vij} is a matrix of esti-
mated mean gene-contents and P = {pij} is a matrix of 
estimated AF for group i and marker j (Garcia-Baccino 
et al., 2017; Mäntysaari et al., 2020). Diagonal elements 
of Γ must range between 0 and 2, and off-diagonal ele-
ments between −1 and 1. Garcia-Baccino’s approaches 
do not guarantee Γ to be in the parameter space.

A weakness is that the base AF may not be robustly 
calculated because of extremely low allele frequencies 
and unbalanced assignment of MF across genotypes 
(Aldridge et al., 2019; Calus and Vandenplas, 2019; 
Kudinov et al., 2020). A simple solution is to reduce the 
number of MF as a trade-off for accurate modeling of 
missing pedigree and breed origins (Calus and Vanden-
plas, 2019). Other options include truncated pedigree, 
redefined base populations, and setting a lower limit for 
AF (Aldridge et al., 2019; Calus and Vandenplas, 2019; 
Kudinov et al., 2020). If MF are defined by period, a 
smooth extrapolation for the elements in Γ can be an 
option (Calus and Vandenplas, 2019; Kudinov et al., 
2020).

Although Γ may not be reliably calculated, Σ can be 
obtained using the association between UPG and MF, 
γ jj jj jF= −( ) =2 1 2Σ ˆ  and γjk = Σjk for groups j and k. 
However, this conversion is not perfect because the re-
sulting matrix may not be positive definite.

Application of MF

Metafounders have been tested in crossbred and 
multibreed domestic animal populations (Christensen 
et al., 2015; Xiang et al., 2017; van Grevenhof et al., 
2019). Christensen et al. (2015) suggested that all 
animals in a pedigree could be related across breeds 

through Γ in the MF model. Combining all available 
records from separate breeds, MF have an advantage 
over UPG which assume that all base animals, both 
within and across breeds, are considered unrelated in 
the pedigree.

Masuda et al. (2019a) reported that the MF model 
yielded GEBV with similar or slightly better inflation 
and bias properties as well as comparable genetic trends 
to QP-M and AltQP-M in US Holstein. Bradford et al. 
(2019) obtained similar results for purebred data in a 
simulation study. Kudinov et al. (2020) applied MF to 
Nordic Red Dairy cattle consisting of multiple breeds 
and concluded that MF give almost the same valida-
tion results and genetic trends as Omega-M for random 
UPG. Granado-Tajada et al. (2020) indicated that the 
advantage of using up to 14 MF to predict GEBV for 
milk yield over pedigree BLUP in 2 sheep populations 
was not clear because of a limited number of genotyped 
animals. Macedo et al. (2020) reported that the MF 
model produced unbiased GEBV, whereas QP-M and 
Omega-M yielded biased GEBV for milk yield in dairy 
sheep.

RELATED ISSUES

Additive Genetic Variance

The additive genetic variance in the MF model is 
rescaled for consistent prediction [22]. Conversely, the 
additive genetic variance is not usually rescaled when 
using UPG in genetic evaluation models. If nonzero 
inbreeding for UPG is assumed, it may be necessary 
to use the additive genetic variance of a base popula-
tion that may have undergone selection. However, it is 
unclear how to estimate variance components and what 
variance components should be used for genetic evalu-
ation in a UPG model (van der Werf, 1992; Pieramati 
and Van Vleck, 1993).

Genetic parameters in dairy cattle are often esti-
mated based on a pedigree model with historical data. 
It is expected that the additive genetic variance can 
decrease under genomic selection, but the pedigree-
based model tends to overestimate the additive genetic 
variance in the latest generation (Hidalgo et al., 2020). 
Thus, these genetic parameters may not be suitable for 
predicting GEBV for young animals. Cross-validation 
of GEBVs gives an optimal additive genetic variance 
for prediction if this variance is considered to be a pre-
diction parameter rather than a genetic parameter as in 
the MF model. Lowering the additive genetic variance 
(and eventually heritability) is sufficient to reduce the 
inflation of GEBV for cows (Wiggans et al., 2012b). 
Misztal et al. (2017) and Tsuruta et al. (2018) found 
that a halved additive genetic variance did not change 
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the accuracy but reduced the inflation of GEBV for 
type traits in young Holstein bulls.

Simplest Solution to Missing Pedigree Issues

If the purpose is to rank young-genotyped animals 
and a long-term genetic trend is not the primary inter-
est, using data truncation (i.e., excluding data from old 
generations) to avoid UPG is an option. Bradford et al. 
(2019) and Tsuruta et al. (2019) reported that a model 
without UPG gave the same validation accuracy for 
young animals as UPG models in simulated and field 
data sets. Lourenco et al. (2014) found that the use 
of only phenotypes and pedigree in the last few gen-
erations resulted in GEBV of the same accuracy and 
less inflation than when using the full data set. This is 
because of sufficient information for genomic prediction 
and better compatibility among relationship matrices 
in the current generation. Although data truncation 
does not change GEBV accuracies with enough data, 
GEBV inflation and bias may remain. Data truncation 
is also advantageous for faster convergence and shorter 
computing times (Pocrnic et al., 2017).

Data truncation can create a case where enough 
genotypes have been collected, and all relevant animals 
are genotyped. Under these conditions, H-inverse ap-
proaches to G−1 and ssGBLUP is close to GBLUP. This 
situation will become more realistic in the future with 
the existence of a large-genotyped population where 
missing pedigree will not be a severe issue.

Single-Step Marker Effect Models

Two typical ssMEM can be considered here: “hybrid 
models,” Bayesian regression models by Fernando 
et al. (2014, 2016) and “single-step SNP BLUP”  
(ssSNPBLUP) by Liu et al. (2014, 2016) and Män-
tysaari and Strandén (2016). With the equivalence 
between GBLUP and SNP BLUP under some assump-
tions (Strandén and Garrick, 2009), ssGBLUP and ssS-
NPBLUP can be equivalent when the markers account 
for the additive genetic variation perfectly (Liu et al., 
2014) and the marker effects follow the multivariate 
normal distribution (Fernando et al., 2014). The hybrid 
models are flexible to assume any a priori distribu-
tion of each marker effect as marker regression models 
(Meuwissen et al., 2001; Habier et al., 2011).

In a selected population, the mean GEBV for geno-
typed animals should be adjusted by µ [8], the differ-
ence with the mean GEBV for nongenotyped animals. 
Whereas Fernando et al. (2014) explicitly considered µ 
in the hybrid models (noted as “J” in their study), ssS-
NPBLUP can be extended to have µ (Hsu et al., 2017; 

Tribout et al., 2019), as demonstrated by Vandenplas 
et al. (2020).

The ssSNPBLUP models with UPG can be obtained 
easily. Vandenplas et al. (2021) applied the QP transfor-
mation to Liu's model and derived the QP-M-equivalent 
formula for ssSNPBLUP. The same result is expected 
by incorporating the Q elements into the model as co-
variates. Additionally, Vandenplas et al. (2021) claimed 
that it is straightforward to use MF in ssSNPBLUP. 
This statement implies that EUPG-M is also applicable 
to ssSNPBLUP because of the equivalence to MF.

Large G

The maximum rank of G = ZZ′/s is the smaller of 
the number of genotyped animals (Ng) and the number 
of markers (Nm), as implied by VanRaden (2008). Ge-
nomic data are highly redundant, and the actual rank 
of G is smaller than either Ng or Nm (Macciotta et al., 
2010; Pocrnic et al., 2016). Given this fact, G−1 does 
not exist with many genotyped animals. Misztal et al. 
(2014) developed the so-called APY (algorithm for 
proven and young) to build the “inverse” of G, say 
GAPY
−1 , while keeping the additive genetic variation of 

the original G matrix. In addition, Mäntysaari et al. 
(2017) suggested a single-step method using the Wood-
bury formula to avoid computing G−1. Because both 
methods only replace G−1 with an equivalent expres-
sion, any UPG or MF model can be applied.

However, a question arises. What role does the align-
ment play if E(G) = A22 may not occur when G is 
large? Although the original matrix computed as the 

inverse of an APY inverse (i.e., GAPY
− −





1 1
) may seem 

incompatible with G (Strandén et al., 2017), the GEBV 
are still reasonable. Masuda et al. (2021) showed that a 
nonaligned G gave numerically the same GEBV as an 
aligned G under Ng > Nm (i.e., the 2 G matrices gave 
different µs, but identical u2). These authors hypothe-
sized that alignment was not necessarily required when 
G was (nearly) singular, whereas the other studies re-
ported the alignment was needed to remove the bias in 
genomic predictions (Legarra et al., 2014).

FINAL REMARKS

In practice, a set of UPG is assigned according to 
the selection intensity and expected genetic merit of 
unknown parents. A complex grouping strategy could 
lead to confounding among group effects or to imprecise 
UPG solutions (Quaas, 1988; Fikse, 2009). Although a 
UPG definition creates no problems in pedigree BLUP, 
the same definition may cause convergence issues and 
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questionable predictions in ssGBLUP (Tsuruta et al., 
2014; Masuda et al., 2019b; Mäntysaari et al., 2020). 
An optimal definition of UPG is data specific and 
generally unknown. Thus, users need to consult UPG 
assignments and ssGBLUP models to obtain unbiased 
and stable predictions using cross-validation methods. 
This is also true for the MF model because the defini-
tion of MF also relies on the user.

CONCLUSIONS

This review presented and discussed issues related 
to missing pedigree in ssGBLUP, properties of several 
UPG models, and how MF are related to UPG. The 
QP-M has a good convergence behavior, but may 
produce biased genetic trends and underestimate 
UPG effects. The AltQP-M produces less bias in ge-
netic trends than QP-M and less inflation of GEBV 
for young-genotyped animals, especially in large data 
sets. The EUPG-M incorporates UPG contributions 
into pedigree relationships for genotyped animals, and 
it was proposed for purebred populations. The MF 
model is a comprehensive solution to missing pedigree 
issues and it is a choice for multibreed or crossbred 
evaluations if the data set permits the estimation of 
a reasonable Γ. Although missing pedigree influences 
genetic trends, its effect on predictability for genotyped 
animals should be negligible when many proven bulls 
are genotyped. In this situation, the indirect-prediction 
method is useful to predict GEBV for young-genotyped 
animals with missing parents.
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